Course curriculum

  • 1

    1_Machine Learning - Unsupervised Learning Course

    • 1_Course outline

    • 2_Books Recommendation

  • 2

    3_Group Learning & QA Community

    • 1_Ecosia Search Engine

  • 3

    4_Overview of Machine Learning

    • 1_What is Machine Learning

    • 2_Phases of Machine Learning Model

    • 3_Different ways in which Machine Learn

    • 4_Types of Machine Learning

    • 5_Machine Learning Full View Recap

  • 4

    5_Introduction to Unsupervised Learning

    • 1_Introduction to Unsupervised Learning

    • 2_Unsupervised learning process

    • 3_Type of UL algorithms

  • 5

    6_What is Clustering

    • 1_What is clustering

    • 2_How clustering different from classification

    • 3_Clustering example

    • 4_What clustering do exactly

    • 6_Types of clustering

    • 5_What are good clusters

  • 6

    7_Similarity & Dissimilarity Measures

    • 1_Similarity n Dissimilarity

    • 2_Similarity measure

    • 3_Similarity measure algorithms

    • 4_Two groups of Similarity measure

    • 5_Cosine similarity

    • 6_Jaccard similarity

    • 7_Euclidean distance

    • 8_Manhattan distance

    • 9_Minkowski distance

    • 10_Distance computation assignment

    • 11_Reading assignment

  • 7

    8_Types of Clustering Algorithms

    • 1_Types of clustering algorithms

    • 2_Clustering algorithm connectivitiy based

    • 3_Clustering algorithm centroid based

    • 4_Clustering algorithm density based

    • 5_Drawback of density and boundary based approaches

    • 6_Clustering algorithm distribution based

    • 7_Advantages disadvantages of clustering algorithms

    • 8_Types of clustering algorithms extension

    • 9_Reading assignment

  • 8

    9_Hierarchical Clustering Algorithm

    • 1_H-clustering algorithm

    • 2_H-clustering algorithm Introduction

    • 3_H-clustering algorithm steps

    • 4_H-clustering merge clusters

    • 5_.H-clustering single linkage

    • 6_H-clustering properties

    • 7_H-clustering R

    • 8_H-clustering R implementation 1

    • 9_H-clustering R implementation 2

    • 10_Reading Assignemnt & Exercise

  • 9

    10_K-Means Clustering Algorithm

    • 1_Kmean clustering module

    • 2_Kmean clustering introduction

    • 3_Kmean clustering algorithm

    • 4_Kmean clustering algorithm visual

    • 5_Kmean clustering problem

    • 6_Kmean clustering R

    • 7_Kmean clustering R visualisation

    • 8_Kmean clustering Optimal cluster

    • 9_Kmean clustering advantanges disadvantages

    • 10_Kmean clustering use cases practice

  • 10

    11_DBSCAN - Density-based Clustering

    • 1_DBSCAN clustering algorithm

  • 11

    12_Cluster Evaluation MetricsUntitled chapter

    • 1_Clustering Evaluation Matric

  • 12

    13_Cluster Visualisation

    • 1_Cluster visualisation-kmeans

    • 2_Cluster visualisation hclust

    • 3_Cluster visualisation factoextra lib

  • 13

    14_Kaggle Competitions

    • 1_Kaggle datasets

  • 14

    14_Kaggle Competitions

    • 1_Kaggle datasets

  • 15

    15_Course Conclusion and CV Guide

    • 1_Course Conclusion