Course curriculum

  • 1

    How to access container based labs

    • Please see the video to learn how you can utilise our containers to perform hands on labs

  • 2

    Artificial Intelligence

    • About the Course and Trainer 1 - Welcome

      FREE PREVIEW
    • 2 - My Background

      FREE PREVIEW
    • 3 - AI and my Creator

      FREE PREVIEW
    • Introduction and Course Overview - What is AI

    • 2-AI is todays life

    • 3 -Subfields of AI

    • 4-Context of AI

    • 5-Expectations from AI

    • 6 -Wrapping Up

    • Problem Solving using Search Techniques - Intro

    • 2 - Let-s play Missionaries and Cannibals

    • 3- Solving Missionaries and Cannibals

    • 4 - Solving Tower of Hanoi

    • 5-Exercise - Frog Problem

    • 6-Dealing with Navigation Problems and Mazes

    • 7 - Wrapping up

    • Heuristic Based Searches -1-Intro

    • 2- Unit 3-2 - Recap

    • 3-Unit 3-3 - Limitations using Exhaustive Search

    • 4-Unit 3-4- Heuristics

    • 5-Unit 3-5 - Good or Bad Heuristic

    • 6-Unit 3-6 - Heuristic Based Searches

    • 7-Unit 3-7 - Best-First Method

    • 8 -Unit 3-8 - Best First - A greedy approach

    • 9-Unit 3-9 - AStar Search

    • 10-Unit 3-10 - AStar Dry Run

    • 11-Unit 3-10 - AStar Optimality

    • 12-Unit 3-12 - Wrapping Up

    • Heuristic Based Searches - 1 - Intro

    • 2 - Gary Kasparov vs Deep Blue

    • 3 - Adversarial Games

    • 4 - Game Tree for TicTacToe

    • 5 - Minimax Algorithm

    • 6 - Minimax Assumptions and Examples

    • 7 - Evaluation Function in Minimax

    • 8 - Pruning in Game Trees

    • 9 - Alpha-beta Pruning

    • 10 - Alpha-beta Pruning - Example II

    • 11 - Interactive Example

    • 12 - Wrapping Up

    • AI in Adversarial Games -1 - Intro

    • Module 1 - Hands on - 1-Code Walk through - Solving Puzzles using Search techniques

    • 2 - Classification using Decision Tree

    • Machine Learning - Intro

    • 2-What is Machine Learning

    • 3 - Supervised Learning

    • 4 - Unsupervised Learning

    • 5-Classification vs Regression

    • 6-Classification vs Regression

    • 7- Machine Learning Process

    • 8- Wrapping Up

    • 1 - Intro - Classification using Decision Tree

    • 2 - Classification - Recap

    • 3 - Decision Tree - Introduced

    • 4 - Classification using Decision Tree

    • 5 - Measuring Node Impurity

    • 6 - Determining the best split

    • 7 - Decision Tree Induction

    • 8 - Stopping Criteria

    • 9 - Concluding Decision Trees

    • Measuring Classification Accuracy - Intro

    • 2-Dividing data into train-test

    • 3-Confusion Matrix and Accuracy

    • 4-Class Imbalance Problem

    • 5-Precision and Recall

    • 6-Sensitivity and Specificity

    • 7 - ROC Curve

    • Artificial Neural Networks - Intro

    • 2 - Outline

    • 3 - A quick History

    • 4 - MLP - Introduction

    • 5 - One-hot encoding

    • 6 - Deciding Input and output Neurons

    • 7 - Activations Functions

    • 8 - Learning a Neural Network

    • 9 - Forward Pass

    • 10 - Backward Pass

    • 11 - Summarizing

    • 12 - Learning Rate

    • 13 - Limitations

    • Classification using Naive Bayes - Intro

    • 2 - Outline

    • 3 - Probabilities Recap

    • 4 - Bayes Theorem and Total Probability

    • 5- Example

    • 6 - Estimating probabilities from data

    • 7- Learning Naive Bayes Model

    • 8 - Another Example

    • 9 - Classification using Naive Bayes

    • 10 - Points to consider for Naive Bayes

    • Clustering using KMeans Intro

    • 1 - Outline

    • 2 - What is Clustering

    • 3 - Clustering Examples

    • 4 - Cluster Quality

    • 5 - Types of Clustering

    • 6 - Distance and Center Measures

    • 7 - Working of KMeans

    • 8 - KMeans Calculation

    • 9 - Initial Centroids

    • 10 - Limitations of KMeans

    • Recommendation Systems - Intro

    • 2 - Outline

    • 3 - Examples

    • 4 - Data for Recommendations

    • 5 - Content-based Recommendation

    • 7 - Measuring Similarity

    • 8 - Latent Factor Model

    • 9 - Adding Biases

    • 10 - Challenges

    • 1-Code Walkthrough - Making Predictions using scikit-learn

    • 2 - Code Walkthrough - Classifying Fashion Products

    • 3 - Data Clustering

    • 1 - Intro - Logic and Reasoning

    • 2 - Outline

    • 3 - Why reasoning

    • 4 - Logic based Systems

    • 5 - Induction vs Deduction

    • 6 - Propositional Logic

    • 7 - First Order Logic

    • 8 - FOL Example

    • 9 - Working with Prolog

    • 10 - Family Tree Example in Prolog

    • 11 - Inference - Forward and Backward Chaining

    • 1 - Intro - Bayesian Networks

    • 2 - Outline

    • 3 - Dealing with uncertainty

    • 4 - Earthquake Example

    • 5 - Bayesian Networks

    • 6 - Reasoning through

    • 7 - Belief Propagation

    • 8 - Inference in a singly connected BN

    • 9 - dSeperation and Markov Blanket

    • AI - Social and Ethical Concerns - User Content and Data Bias

    • 2 - Robustness

    • 3 - Fake Content

    • 4 - Autonomy of Machines

    • 5 - Transparency

    • 6 - Wrapping up

    • Feedback

  • 3

    Python Programming for Machine Learning

    • Lec 01 - Intro

      FREE PREVIEW
    • Lec 02 - Setting up Envmt - Part 01

    • Lec 02 - IDLE Demo Part 02

    • Lec 02 - Setting up Envmt - Urdu - Part 03

    • Lec 02 - Jupyter Demo - Urdu - Part 04

    • Lec 02 - Programming without IDE - Part 05

    • Lec 03 - Setting the Envmt - VSC -

    • Lec 03 - VSC Demo -

    • Quiz 1 - Introduction to Python

    • Lec 04 - Basics - IO - Urdu

    • Lec 05 - Python Basic Syntax

    • Lec 06 - Variables and Data Types

    • Python Programming Exercises - Basics

    • Quiz 2 - Basic Input Output, Variables

    • Lec 07 - Strings

    • Programming Exercises - Strings

    • Quiz 3- Strings

    • Lec 08 - Compund Data Types

    • Programming Exercises - Compound Data Types

    • Quiz 4 - Compound and Datetime Data Types

    • Lec 10 - Operators and Precedence

    • Lec 11 - Decisions

    • Quiz 5 - if else- Decisions

    • Lec 12 - Loops

    • Python Programming Exercises - Decisions and Loops

    • Quiz 6 - Loops

    • Lec 13 - Functions - Part 1

    • Lec 14 - Functions - Part 2

    • Programming Exercises - Functions

    • Quiz 7 - Functions

    • Lec 15 - Modules

    • Lec 16 - Packages

    • Lec 17 - Files and Directories

    • Programming Exercises - Files and Directories

    • Quiz 9 - Files and Directories

    • Lec 18 - Exception Handling

    • Quiz 10 - Exception Handling

    • Python Basics Cheat Sheet

    • Lec 19 - Python - Introduction

    • Lec 20 - Numpy - Part 1

    • Lec 20 - Numpy - Part 2

    • Programming Exercises - Numpy

    • Quiz 1 - Numpy

    • Numpy - Cheat Sheet

    • Lec 21 - Pandas

    • Lec 21 - Pandas - Part 2

    • Programming Exercises - Pandas

    • Quiz 2 - Pandas

    • Pandas - Cheat Sheet

  • 4

    Deep Learning

    • Nueral Netowrks - Motivation

      FREE PREVIEW
    • 010102 - Biological Neurons

    • 010103 - Brains and ANN

    • 010104 - Evolution of Deep Learning

    • 010105 - Types of ANN

    • 020101 - Logical Computations with MP Neuron

    • 020102 - Perceptron

    • 020104 - Sigmoid Neurons

    • 020105 - Other Activation Function

    • 030101 - FFNN

    • 030102 - Backpropagation

    • 030103 - Backpropagation Numerical Example - Urdu

    • 030103 - Backpropagation - A More Complex Numerical Example

    • 030104 - Neural Network - Python Implementation

    • Convolutional Neural Networks - P5C1L01 - Introduction

    • P5C1L02 - Overcoming Limitations of FFNN - Urdu

    • P5C1L03 - CNN Details - Part 1

    • P5C1L04 - CNN Details - Part 2

    • P5C1L05 - Parameter Computation for CNN

    • P5C1L06 - Deep Learning Architectures - Urdu

    • Feedback

  • 5

    Machine Learning - Mathematics and Python Implementation

    • Introduction to the Course

      FREE PREVIEW
    • 110101 - Introduction to ML

      FREE PREVIEW
    • 110102 - Flipped Programming Paradigm of ML

    • 110103 - Success Stories of ML

    • 110104 - Terminologies

    • 110105 - Types of ML

    • 110106 - Workflow of Machine Learning Problem

    • 110107 - Challenges of ML

    • 110108 - Demo ML Project

    • Quiz 1 - Introduction

    • 210101 - Linear Algebra and Matrices

    • 210102 - Probability

    • 210103 - Calculus

    • Supervised Learning

    • 310101 - Classification Inutition

    • 310103 - Classification - Geometry

    • 310104 - Linear Classification

    • 310105 - Parametrization of Linear Classifiers

    • 310106 - Perceptron

    • 310107 - Perceptron - Numerical Example

    • 310108 - Perceptron - Python Implementation

    • Quiz 2 - Linear Classification - Perceptron

    • Practice Exercises - Perceptron

    • 410101 - Large Margin Classifier

    • 410102 - Regularization

    • 410103 - Convex Surrogate Loss Functions

    • 410104 - Objective Function

    • 410105 - Support Vector Machine and Gradient Descent

    • 410107 - SVM - Python Implementation

    • Quiz 3 - Support Vector Machine

    • Practice Exercises - Linear SVM

    • 510101 - Logistic Regression - Intro

    • 510102 - Logistic Regression - odds vs logit

    • 510103 - Logistic Regression - Problem Setting

    • 510104 - Logistic Regression - Gradient Descent

    • 510105 - Logistic Regression - Python Implementation

    • 610101 - Discriminative vs Generative Models

    • 610102 - Bayesian Classification

    • 610103 - Bayesian Model

    • 610104 - Bayes Classifier - Numerical Example

    • Quiz 4 - Naive Bayes

    • 710101 - Nearest Neighbours - Introduction

    • 710102 - Nearest Neighbours - Numerical Example

    • 710103 - Nearest Neighbours - Issues

    • Quiz 5 - Nearest Neighbours

    • Practice Exercises - kNN

    • 80101 - Introduction to Regression

    • 80102 - Simple Linear Regression Procedure

    • 80103 - Goodness of Fit

    • Quiz - Linear Regression and Goodness of Fit

    • Unsupervised Learning

    • Clustering Algorithms

    • 910101 - kMeans - Introduction

    • 910102 - kMeans - Numerical Example

    • 910103 - kMeans - Final Words

    • 910104 - k-Medoids

    • Quiz - k Means

    • Practice Exercise - k Means and k Medoid

    • 050701 - Neural Networks - Motivation -

    • 050702 - Biological Neurons

    • 050703 - Brains and ANN

    • 050704 - Types of ANN

    • 050706 - Backpropagation

    • 050708 - Neural Network - Python Implementation

  • 6

    Advanced Topics in Machine Learning

    • Introduction to the Course

      FREE PREVIEW
    • C01L01 - Issues with Data

      FREE PREVIEW
    • C01L02 - Over and Under Fitting - Part 1

    • C01L03 - Over and Under Fitting - Part 2

    • C01L04 - Regularization

    • C01L05 - Mathematics of Regularization

    • C01L06 - L1 vs L2 Regularization

    • C01L07 - Cross Validation

    • C01L08 - Stratified Sampling

    • C02L01 - End to End Machine Learning Project - Part 1

    • C02L02 - End to End Machine Learning Project - Part 2

    • C02L03 - End to End Machine Learning Project - SRS

    • C02L04 - End to End Machine Learning Project - visualization

    • C02L06 - End to End Machine Learning Project - Training

    • C02L07 - End to End Machine Learning Project - Fine Tuning

    • C03L01 - Introduction

    • C03L02 - Constructing Decision Trees

    • C03L03 - Information Gain

    • C03L04 - Entropy-Based Automatic Decision Tree Construction

    • C03L05 - Gini Impurity

    • C04S02L01 - Bagging

    • C04S03L02 - Adaboost

    • C04S03L03 - Adaboost Numerical Example1

    • C04S02L02 - Bagging Example

    • C04S01L01 - Introduction

    • C04S01L02 - Types of Ensemble Learning

    • C04S03L09 - Gradient Boosting - Numerical Example

    • C04S03L10 - gboost_impl

    • C05S01L01 - Multiclass Classification - Intro

    • C05S01L02 - One Against All Strategy

    • C05S01L06 - Multinomial Logistic Regression

    • C05S01L05 - Multi-Class SVM

  • 7

    Practical Applications of Machine Learning

    • Part 1 - Introduction

      FREE PREVIEW
    • Part 2 - Data Exploration

      FREE PREVIEW
    • Part 3 - Model Development and Prediction - Classification

    • Part 4 - Model Development and Prediction - Regression

    • Chap 2 - Image Recognition Using PyTorch

    • Part 1 - Introduction

    • Part 2 - Data Exploration

    • Part 3 - Model Dev-Training-Validation

    • Chap 3 - Medical Diagnosis

    • Part 1 - Introduction

    • Part 2 - Explore the Data

    • Part 3 - Model Dev and Training

  • 8

    Deep Learning Deep Dive

    • Dataset Info

      FREE PREVIEW
    • Data Preprocessing

    • Train Test Split

    • Building ANN

    • Training ANN

    • Evaluating Model

    • Codes and datasets

    • Convolutional Neural Networks - Dataset Info

    • Preprocessing Images

    • Building CNN

    • Training CNN

    • Predicting Results

    • Codes

    • Recurrent Neural Networks - Dataset Info

    • Recurrent Neural Networks - Data Preprocessing

    • Recurrent Neural Networks - Building RNN and LSTM

    • Recurrent Neural Networks - Training Model

    • Recurrent Neural Networks - Predicting Results

    • Recurrent Neural Networks - Visualising Results

    • Recurrent Neural Networks - Visualisation Correction

    • Recurrent Neural Networks - Codes and dataset

    • Self Organizing Maps - Dataset Info

    • Self Organizing Maps - Preprocessing Data

    • Self Organizing Maps - Training SOM

    • Self Organizing Maps - Visualising Results

    • Self Organizing Maps - Finding Frauds

    • Self Organizing Maps - Codes and datasets

    • Self Organizing Maps - Boltzmann Machine - Dataset Info

    • Self Organizing Maps - Datapreprocessing I

    • Self Organizing Maps - Datapreprocessing II

    • Self Organizing Maps -Datapreprocessing III

    • Self Organizing Maps - Datapreprocessing IV

    • Self Organizing Maps - Codes and datasets

    • Auto Encoders - Data Preprocessing

    • Auto Encoders - Transform Data

    • Auto Encoders - Tensor

    • Auto Encoders - Auto Encoder Architecture

    • Auto Encoders - Training and Testing

    • Auto Encoders - Codes and datasets

    • Feedback

  • 9

    Machine learning Model Development and Deployment

    • Setup and Installation - Anaconda Distribution Installation

      FREE PREVIEW
    • Virtual Environments - Creating Virtual Environments

    • Libraries Installation

    • Image Processing with OpenCV - Introduction to Images

    • Image Processing with OpenCV - Reading Images I

    • Image Processing with OpenCV - Reading Images II

    • Image Processing with OpenCV - Understanding Pixels

    • Image Processing with OpenCV - Resize Images I

    • Image Processing with OpenCV - Resize Images II

    • Image Processing with OpenCV - Face Detection on Images

    • Image Processing with OpenCV - Face Detection on Videos

    • Facial Recognition Model Development - Data Understanding

    • Facial Recognition Model Development - Cropping an Image

    • Facial Recognition Model Development - Data Processing I

    • Facial Recognition Model Development - Data Processing II

    • Facial Recognition Model Development - Eigen Faces I

    • Facial Recognition Model Development - Eigen Faces II

    • Facial Recognition Model Development - Training Machine Learning Model

    • Facial Recognition Model Development - Evaluation Metrics

    • Facial Recognition Model Development - Hyper Parameter Tuning

    • Facial Recognition Model Development - Model Pipeline

    • Basics of Flask - Setup VS Code and Flask

    • Basics of Flask - Flask Routing

    • Basics of Flask - Variable Rules

    • Basics of Flask - Jinja Template I

    • Basics of Flask - Jinja Template II

    • Basics of Flask - Jinja Template III

    • Basics of Flask - Inheritance

    • Static Files

    • Basics of Flask - HTTP Methods

    • Basics of Flask - Upload Files

    • Basics of Flask - First Flask App

    • Flask App - Folder Structure

    • Flask App - Main.py Basic App

    • Flask App - Views.py File

    • Flask App - Base HTML I

    • Flask App - Base HTML II

    • Flask App - Home Page

    • Flask App - App Page

    • Flask App - Gender App Page I

    • Flask App - Gender App Page II

    • Flask App - Gender App Page III

    • Flask App - Gender App Page IV

    • Flask App - Gender App Page VII

    • Model Deployment - Setup Code for Deployment

    • Model Deployment - Push App to Github

    • Model Deployment - Deploy App to Heroku

    • Model Deployment - Ending Remarks

    • Feedback

  • 10

    Computer Vision

    • Virtual Platform

    • 1 - What are tensors

      FREE PREVIEW
    • Basic operations Using Tensors

    • Linear Regression I

    • Linear Regression II

    • Linear Regression III

    • Logistic Regression I

    • Logistic Regression II

    • Logistic Regression III

    • Logistic Regression VI

    • Logistic Regression V

    • 2 Section 1 - Importing Libraries

    • Dataset Info

    • Create DataLoader

    • Building our CNN

    • Loss Function

    • Training Model

    • Prediction I

    • Prediction II

    • 3 Section - Introduction to opencv

    • Introduction to open cv 2

    • Reading Images

    • Reading Webcam

    • Color Spaces

    • Translation and Rotation

    • BlurImage

    • WarpPerspective

    • Add Shapes

    • Add Text

    • JoinImages

    • Bitwise_or_not

    • Histogram Computation

    • Shape Detection

    • Document scanner

    • Project Setup

    • Detections SSD

    • result on Images

    • Results on live videos

    • Edge Detection

    • 06 Object Detection - YOLO-NAS Implementation

    • 01 Facial Landmark using DLIB_edited

    • SSD - Funny Dog

    • Data

    • Layers

    • SSD

  • 11

    Natural Language Processing (Updated Course)

    • Chapter Introduction 1. Welcome

      FREE PREVIEW
    • 2. This session

      FREE PREVIEW
    • 3. NLP

      FREE PREVIEW
    • 4. Some history

    • 5. Why is it hard

    • Unit 01 - Intro.

    • Chapter 2 Regular Expressions - 1-What is RE

    • 2 - Code Demo I

    • 3 - Code Demo II

    • 4 - Code Demo III

    • Unit 02 - Regular Expressions

    • Chapter 3 Basic Text Processing using NLTK and spacy Introduction

    • 2 - Outline

    • 3.1 - Text Processing Steps

    • 3.2 - Text Processing Steps

    • 4 - About NLTK

    • 5 - NLTK Demo

    • 6 - Spacy Demo

    • 7 - NLTK vs Spacy

    • Unit 03 - Basic Text Processing

    • Chapter 4. Pattern Matching and Topic Modeling - Introduction

    • 2 - Outline

    • 3 - PatternMatching in spacy

    • 4 - about LDA and NMF

    • 5 - LDA and NMF in scikit-learn

    • Unit 04 - Topic Modeling

    • Chapter 5.- Text Vectorization - Introduction

    • 2 - Outline

    • 3 - Text Classifiation

    • 4 - Text Vectorization

    • 5 - Code Demo

    • Unit 05 - Converting text into vectors

    • 6. Text Classification using NB - Introduction

    • 2 - Outline

    • 3 - Naive Bayes

    • 4 - Naive Bayes - Example

    • 5 - Naive Bayes - Strength and Weaknesses

    • 6 - Code Demo

    • Unit 06 - Learning Classifiers - NB

    • Chapter 7. Text Classification using ANN - Intro

    • 2 - Outline

    • 3 - ANN Introduced

    • 4 - Topology of ANN

    • 5 - Backpropagation

    • 6 - Learning Rate and Bias

    • 7 - Limitations

    • 8 - Code Demo

    • Unit 07 - Learning Classifiers - ANN

    • Chapter 8 - Intro Word Embeddings

    • 2 - Outline

    • 3 - Learning Word Embeddings

    • 4 - Visualising Embeddings

    • 5 - Pretrained Embedding

    • 6 - Using pretrained word2vec and glove embeddings

    • 7 - Learning your word2vec model using gensim

    • 8 - Switching to Keras

    • Unit 08 - Word Embeddings

    • Chapter 9. Recurrent Neural Networks - Intro

    • 2 - Outline

    • 3 - What is RNN

    • 4 - Working of RNN

    • 5 - Types of RNN

    • 6 - Short term memory

    • 7 - Bidirectional RNN

    • 8 - Implementing RNN and BRNN in Keras

    • Unit 09 - Recurrent Neural Networks (RNN)

    • Chapter 10 .LSTM_GRUs - Intro

    • 2 - Outline

    • 3 - LSTM Intuition

    • 4 - RNN Recap

    • 5 - LSTM Cell

    • 6 - LSTM Architecture

    • 7 - GRU

    • 8 - Code Demo

    • LSTM_GRU

    • Chapter 11. Transformers and Hugging Face - Intro

    • 2 - Outline

    • 3 - What is attention

    • 4 - Self attention in transformers

    • 5 -Generating Text

    • 6 - Architecture Overview

    • 7 - Applications

    • 8 - Introducing Hugging Face

    • 9 - Using Hugging Face Pipelines

    • Unit 11 - Transformers