Course curriculum
-
1
How to access container based labs
-
Please see the video to learn how you can utilise our containers to perform hands on labs
-
-
2
Artificial Intelligence
-
About the Course and Trainer 1 - Welcome
FREE PREVIEW -
2 - My Background
FREE PREVIEW -
3 - AI and my Creator
FREE PREVIEW -
Introduction and Course Overview - What is AI
-
2-AI is todays life
-
3 -Subfields of AI
-
4-Context of AI
-
5-Expectations from AI
-
6 -Wrapping Up
-
Problem Solving using Search Techniques - Intro
-
2 - Let-s play Missionaries and Cannibals
-
3- Solving Missionaries and Cannibals
-
4 - Solving Tower of Hanoi
-
5-Exercise - Frog Problem
-
6-Dealing with Navigation Problems and Mazes
-
7 - Wrapping up
-
Heuristic Based Searches -1-Intro
-
2- Unit 3-2 - Recap
-
3-Unit 3-3 - Limitations using Exhaustive Search
-
4-Unit 3-4- Heuristics
-
5-Unit 3-5 - Good or Bad Heuristic
-
6-Unit 3-6 - Heuristic Based Searches
-
7-Unit 3-7 - Best-First Method
-
8 -Unit 3-8 - Best First - A greedy approach
-
9-Unit 3-9 - AStar Search
-
10-Unit 3-10 - AStar Dry Run
-
11-Unit 3-10 - AStar Optimality
-
12-Unit 3-12 - Wrapping Up
-
Heuristic Based Searches - 1 - Intro
-
2 - Gary Kasparov vs Deep Blue
-
3 - Adversarial Games
-
4 - Game Tree for TicTacToe
-
5 - Minimax Algorithm
-
6 - Minimax Assumptions and Examples
-
7 - Evaluation Function in Minimax
-
8 - Pruning in Game Trees
-
9 - Alpha-beta Pruning
-
10 - Alpha-beta Pruning - Example II
-
11 - Interactive Example
-
12 - Wrapping Up
-
AI in Adversarial Games -1 - Intro
-
Module 1 - Hands on - 1-Code Walk through - Solving Puzzles using Search techniques
-
2 - Classification using Decision Tree
-
Machine Learning - Intro
-
2-What is Machine Learning
-
3 - Supervised Learning
-
4 - Unsupervised Learning
-
5-Classification vs Regression
-
6-Classification vs Regression
-
7- Machine Learning Process
-
8- Wrapping Up
-
1 - Intro - Classification using Decision Tree
-
2 - Classification - Recap
-
3 - Decision Tree - Introduced
-
4 - Classification using Decision Tree
-
5 - Measuring Node Impurity
-
6 - Determining the best split
-
7 - Decision Tree Induction
-
8 - Stopping Criteria
-
9 - Concluding Decision Trees
-
Measuring Classification Accuracy - Intro
-
2-Dividing data into train-test
-
3-Confusion Matrix and Accuracy
-
4-Class Imbalance Problem
-
5-Precision and Recall
-
6-Sensitivity and Specificity
-
7 - ROC Curve
-
Artificial Neural Networks - Intro
-
2 - Outline
-
3 - A quick History
-
4 - MLP - Introduction
-
5 - One-hot encoding
-
6 - Deciding Input and output Neurons
-
7 - Activations Functions
-
8 - Learning a Neural Network
-
9 - Forward Pass
-
10 - Backward Pass
-
11 - Summarizing
-
12 - Learning Rate
-
13 - Limitations
-
Classification using Naive Bayes - Intro
-
2 - Outline
-
3 - Probabilities Recap
-
4 - Bayes Theorem and Total Probability
-
5- Example
-
6 - Estimating probabilities from data
-
7- Learning Naive Bayes Model
-
8 - Another Example
-
9 - Classification using Naive Bayes
-
10 - Points to consider for Naive Bayes
-
Clustering using KMeans Intro
-
1 - Outline
-
2 - What is Clustering
-
3 - Clustering Examples
-
4 - Cluster Quality
-
5 - Types of Clustering
-
6 - Distance and Center Measures
-
7 - Working of KMeans
-
8 - KMeans Calculation
-
9 - Initial Centroids
-
10 - Limitations of KMeans
-
Recommendation Systems - Intro
-
2 - Outline
-
3 - Examples
-
4 - Data for Recommendations
-
5 - Content-based Recommendation
-
7 - Measuring Similarity
-
8 - Latent Factor Model
-
9 - Adding Biases
-
10 - Challenges
-
1-Code Walkthrough - Making Predictions using scikit-learn
-
2 - Code Walkthrough - Classifying Fashion Products
-
3 - Data Clustering
-
1 - Intro - Logic and Reasoning
-
2 - Outline
-
3 - Why reasoning
-
4 - Logic based Systems
-
5 - Induction vs Deduction
-
6 - Propositional Logic
-
7 - First Order Logic
-
8 - FOL Example
-
9 - Working with Prolog
-
10 - Family Tree Example in Prolog
-
11 - Inference - Forward and Backward Chaining
-
1 - Intro - Bayesian Networks
-
2 - Outline
-
3 - Dealing with uncertainty
-
4 - Earthquake Example
-
5 - Bayesian Networks
-
6 - Reasoning through
-
7 - Belief Propagation
-
8 - Inference in a singly connected BN
-
9 - dSeperation and Markov Blanket
-
AI - Social and Ethical Concerns - User Content and Data Bias
-
2 - Robustness
-
3 - Fake Content
-
4 - Autonomy of Machines
-
5 - Transparency
-
6 - Wrapping up
-
Feedback
-
-
3
Python Programming for Machine Learning
-
Lec 01 - Intro
FREE PREVIEW -
Lec 02 - Setting up Envmt - Part 01
-
Lec 02 - IDLE Demo Part 02
-
Lec 02 - Setting up Envmt - Urdu - Part 03
-
Lec 02 - Jupyter Demo - Urdu - Part 04
-
Lec 02 - Programming without IDE - Part 05
-
Lec 03 - Setting the Envmt - VSC -
-
Lec 03 - VSC Demo -
-
Quiz 1 - Introduction to Python
-
Lec 04 - Basics - IO - Urdu
-
Lec 05 - Python Basic Syntax
-
Lec 06 - Variables and Data Types
-
Python Programming Exercises - Basics
-
Quiz 2 - Basic Input Output, Variables
-
Lec 07 - Strings
-
Programming Exercises - Strings
-
Quiz 3- Strings
-
Lec 08 - Compund Data Types
-
Programming Exercises - Compound Data Types
-
Quiz 4 - Compound and Datetime Data Types
-
Lec 10 - Operators and Precedence
-
Lec 11 - Decisions
-
Quiz 5 - if else- Decisions
-
Lec 12 - Loops
-
Python Programming Exercises - Decisions and Loops
-
Quiz 6 - Loops
-
Lec 13 - Functions - Part 1
-
Lec 14 - Functions - Part 2
-
Programming Exercises - Functions
-
Quiz 7 - Functions
-
Lec 15 - Modules
-
Lec 16 - Packages
-
Lec 17 - Files and Directories
-
Programming Exercises - Files and Directories
-
Quiz 9 - Files and Directories
-
Lec 18 - Exception Handling
-
Quiz 10 - Exception Handling
-
Python Basics Cheat Sheet
-
Lec 19 - Python - Introduction
-
Lec 20 - Numpy - Part 1
-
Lec 20 - Numpy - Part 2
-
Programming Exercises - Numpy
-
Quiz 1 - Numpy
-
Numpy - Cheat Sheet
-
Lec 21 - Pandas
-
Lec 21 - Pandas - Part 2
-
Programming Exercises - Pandas
-
Quiz 2 - Pandas
-
Pandas - Cheat Sheet
-
-
4
Deep Learning
-
Nueral Netowrks - Motivation
FREE PREVIEW -
010102 - Biological Neurons
-
010103 - Brains and ANN
-
010104 - Evolution of Deep Learning
-
010105 - Types of ANN
-
020101 - Logical Computations with MP Neuron
-
020102 - Perceptron
-
020104 - Sigmoid Neurons
-
020105 - Other Activation Function
-
030101 - FFNN
-
030102 - Backpropagation
-
030103 - Backpropagation Numerical Example - Urdu
-
030103 - Backpropagation - A More Complex Numerical Example
-
030104 - Neural Network - Python Implementation
-
Convolutional Neural Networks - P5C1L01 - Introduction
-
P5C1L02 - Overcoming Limitations of FFNN - Urdu
-
P5C1L03 - CNN Details - Part 1
-
P5C1L04 - CNN Details - Part 2
-
P5C1L05 - Parameter Computation for CNN
-
P5C1L06 - Deep Learning Architectures - Urdu
-
Feedback
-
-
5
Machine Learning - Mathematics and Python Implementation
-
Introduction to the Course
FREE PREVIEW -
110101 - Introduction to ML
FREE PREVIEW -
110102 - Flipped Programming Paradigm of ML
-
110103 - Success Stories of ML
-
110104 - Terminologies
-
110105 - Types of ML
-
110106 - Workflow of Machine Learning Problem
-
110107 - Challenges of ML
-
110108 - Demo ML Project
-
Quiz 1 - Introduction
-
210101 - Linear Algebra and Matrices
-
210102 - Probability
-
210103 - Calculus
-
Supervised Learning
-
310101 - Classification Inutition
-
310103 - Classification - Geometry
-
310104 - Linear Classification
-
310105 - Parametrization of Linear Classifiers
-
310106 - Perceptron
-
310107 - Perceptron - Numerical Example
-
310108 - Perceptron - Python Implementation
-
Quiz 2 - Linear Classification - Perceptron
-
Practice Exercises - Perceptron
-
410101 - Large Margin Classifier
-
410102 - Regularization
-
410103 - Convex Surrogate Loss Functions
-
410104 - Objective Function
-
410105 - Support Vector Machine and Gradient Descent
-
410107 - SVM - Python Implementation
-
Quiz 3 - Support Vector Machine
-
Practice Exercises - Linear SVM
-
510101 - Logistic Regression - Intro
-
510102 - Logistic Regression - odds vs logit
-
510103 - Logistic Regression - Problem Setting
-
510104 - Logistic Regression - Gradient Descent
-
510105 - Logistic Regression - Python Implementation
-
610101 - Discriminative vs Generative Models
-
610102 - Bayesian Classification
-
610103 - Bayesian Model
-
610104 - Bayes Classifier - Numerical Example
-
Quiz 4 - Naive Bayes
-
710101 - Nearest Neighbours - Introduction
-
710102 - Nearest Neighbours - Numerical Example
-
710103 - Nearest Neighbours - Issues
-
Quiz 5 - Nearest Neighbours
-
Practice Exercises - kNN
-
80101 - Introduction to Regression
-
80102 - Simple Linear Regression Procedure
-
80103 - Goodness of Fit
-
Quiz - Linear Regression and Goodness of Fit
-
Unsupervised Learning
-
Clustering Algorithms
-
910101 - kMeans - Introduction
-
910102 - kMeans - Numerical Example
-
910103 - kMeans - Final Words
-
910104 - k-Medoids
-
Quiz - k Means
-
Practice Exercise - k Means and k Medoid
-
050701 - Neural Networks - Motivation -
-
050702 - Biological Neurons
-
050703 - Brains and ANN
-
050704 - Types of ANN
-
050706 - Backpropagation
-
050708 - Neural Network - Python Implementation
-
-
6
Advanced Topics in Machine Learning
-
Introduction to the Course
FREE PREVIEW -
C01L01 - Issues with Data
FREE PREVIEW -
C01L02 - Over and Under Fitting - Part 1
-
C01L03 - Over and Under Fitting - Part 2
-
C01L04 - Regularization
-
C01L05 - Mathematics of Regularization
-
C01L06 - L1 vs L2 Regularization
-
C01L07 - Cross Validation
-
C01L08 - Stratified Sampling
-
C02L01 - End to End Machine Learning Project - Part 1
-
C02L02 - End to End Machine Learning Project - Part 2
-
C02L03 - End to End Machine Learning Project - SRS
-
C02L04 - End to End Machine Learning Project - visualization
-
C02L06 - End to End Machine Learning Project - Training
-
C02L07 - End to End Machine Learning Project - Fine Tuning
-
C03L01 - Introduction
-
C03L02 - Constructing Decision Trees
-
C03L03 - Information Gain
-
C03L04 - Entropy-Based Automatic Decision Tree Construction
-
C03L05 - Gini Impurity
-
C04S02L01 - Bagging
-
C04S03L02 - Adaboost
-
C04S03L03 - Adaboost Numerical Example1
-
C04S02L02 - Bagging Example
-
C04S01L01 - Introduction
-
C04S01L02 - Types of Ensemble Learning
-
C04S03L09 - Gradient Boosting - Numerical Example
-
C04S03L10 - gboost_impl
-
C05S01L01 - Multiclass Classification - Intro
-
C05S01L02 - One Against All Strategy
-
C05S01L06 - Multinomial Logistic Regression
-
C05S01L05 - Multi-Class SVM
-
-
7
Practical Applications of Machine Learning
-
Part 1 - Introduction
FREE PREVIEW -
Part 2 - Data Exploration
FREE PREVIEW -
Part 3 - Model Development and Prediction - Classification
-
Part 4 - Model Development and Prediction - Regression
-
Chap 2 - Image Recognition Using PyTorch
-
Part 1 - Introduction
-
Part 2 - Data Exploration
-
Part 3 - Model Dev-Training-Validation
-
Chap 3 - Medical Diagnosis
-
Part 1 - Introduction
-
Part 2 - Explore the Data
-
Part 3 - Model Dev and Training
-
-
8
Deep Learning Deep Dive
-
Dataset Info
FREE PREVIEW -
Data Preprocessing
-
Train Test Split
-
Building ANN
-
Training ANN
-
Evaluating Model
-
Codes and datasets
-
Convolutional Neural Networks - Dataset Info
-
Preprocessing Images
-
Building CNN
-
Training CNN
-
Predicting Results
-
Codes
-
Recurrent Neural Networks - Dataset Info
-
Recurrent Neural Networks - Data Preprocessing
-
Recurrent Neural Networks - Building RNN and LSTM
-
Recurrent Neural Networks - Training Model
-
Recurrent Neural Networks - Predicting Results
-
Recurrent Neural Networks - Visualising Results
-
Recurrent Neural Networks - Visualisation Correction
-
Recurrent Neural Networks - Codes and dataset
-
Self Organizing Maps - Dataset Info
-
Self Organizing Maps - Preprocessing Data
-
Self Organizing Maps - Training SOM
-
Self Organizing Maps - Visualising Results
-
Self Organizing Maps - Finding Frauds
-
Self Organizing Maps - Codes and datasets
-
Self Organizing Maps - Boltzmann Machine - Dataset Info
-
Self Organizing Maps - Datapreprocessing I
-
Self Organizing Maps - Datapreprocessing II
-
Self Organizing Maps -Datapreprocessing III
-
Self Organizing Maps - Datapreprocessing IV
-
Self Organizing Maps - Codes and datasets
-
Auto Encoders - Data Preprocessing
-
Auto Encoders - Transform Data
-
Auto Encoders - Tensor
-
Auto Encoders - Auto Encoder Architecture
-
Auto Encoders - Training and Testing
-
Auto Encoders - Codes and datasets
-
Feedback
-
-
9
Machine learning Model Development and Deployment
-
Setup and Installation - Anaconda Distribution Installation
FREE PREVIEW -
Virtual Environments - Creating Virtual Environments
-
Libraries Installation
-
Image Processing with OpenCV - Introduction to Images
-
Image Processing with OpenCV - Reading Images I
-
Image Processing with OpenCV - Reading Images II
-
Image Processing with OpenCV - Understanding Pixels
-
Image Processing with OpenCV - Resize Images I
-
Image Processing with OpenCV - Resize Images II
-
Image Processing with OpenCV - Face Detection on Images
-
Image Processing with OpenCV - Face Detection on Videos
-
Facial Recognition Model Development - Data Understanding
-
Facial Recognition Model Development - Cropping an Image
-
Facial Recognition Model Development - Data Processing I
-
Facial Recognition Model Development - Data Processing II
-
Facial Recognition Model Development - Eigen Faces I
-
Facial Recognition Model Development - Eigen Faces II
-
Facial Recognition Model Development - Training Machine Learning Model
-
Facial Recognition Model Development - Evaluation Metrics
-
Facial Recognition Model Development - Hyper Parameter Tuning
-
Facial Recognition Model Development - Model Pipeline
-
Basics of Flask - Setup VS Code and Flask
-
Basics of Flask - Flask Routing
-
Basics of Flask - Variable Rules
-
Basics of Flask - Jinja Template I
-
Basics of Flask - Jinja Template II
-
Basics of Flask - Jinja Template III
-
Basics of Flask - Inheritance
-
Static Files
-
Basics of Flask - HTTP Methods
-
Basics of Flask - Upload Files
-
Basics of Flask - First Flask App
-
Flask App - Folder Structure
-
Flask App - Main.py Basic App
-
Flask App - Views.py File
-
Flask App - Base HTML I
-
Flask App - Base HTML II
-
Flask App - Home Page
-
Flask App - App Page
-
Flask App - Gender App Page I
-
Flask App - Gender App Page II
-
Flask App - Gender App Page III
-
Flask App - Gender App Page IV
-
Flask App - Gender App Page VII
-
Model Deployment - Setup Code for Deployment
-
Model Deployment - Push App to Github
-
Model Deployment - Deploy App to Heroku
-
Model Deployment - Ending Remarks
-
Feedback
-
-
10
Computer Vision
-
Virtual Platform
-
1 - What are tensors
FREE PREVIEW -
Basic operations Using Tensors
-
Linear Regression I
-
Linear Regression II
-
Linear Regression III
-
Logistic Regression I
-
Logistic Regression II
-
Logistic Regression III
-
Logistic Regression VI
-
Logistic Regression V
-
2 Section 1 - Importing Libraries
-
Dataset Info
-
Create DataLoader
-
Building our CNN
-
Loss Function
-
Training Model
-
Prediction I
-
Prediction II
-
3 Section - Introduction to opencv
-
Introduction to open cv 2
-
Reading Images
-
Reading Webcam
-
Color Spaces
-
Translation and Rotation
-
BlurImage
-
WarpPerspective
-
Add Shapes
-
Add Text
-
JoinImages
-
Bitwise_or_not
-
Histogram Computation
-
Shape Detection
-
Document scanner
-
Project Setup
-
Detections SSD
-
result on Images
-
Results on live videos
-
Edge Detection
-
06 Object Detection - YOLO-NAS Implementation
-
01 Facial Landmark using DLIB_edited
-
SSD - Funny Dog
-
Data
-
Layers
-
SSD
-
-
11
Natural Language Processing (Updated Course)
-
Chapter Introduction 1. Welcome
FREE PREVIEW -
2. This session
FREE PREVIEW -
3. NLP
FREE PREVIEW -
4. Some history
-
5. Why is it hard
-
Unit 01 - Intro.
-
Chapter 2 Regular Expressions - 1-What is RE
-
2 - Code Demo I
-
3 - Code Demo II
-
4 - Code Demo III
-
Unit 02 - Regular Expressions
-
Chapter 3 Basic Text Processing using NLTK and spacy Introduction
-
2 - Outline
-
3.1 - Text Processing Steps
-
3.2 - Text Processing Steps
-
4 - About NLTK
-
5 - NLTK Demo
-
6 - Spacy Demo
-
7 - NLTK vs Spacy
-
Unit 03 - Basic Text Processing
-
Chapter 4. Pattern Matching and Topic Modeling - Introduction
-
2 - Outline
-
3 - PatternMatching in spacy
-
4 - about LDA and NMF
-
5 - LDA and NMF in scikit-learn
-
Unit 04 - Topic Modeling
-
Chapter 5.- Text Vectorization - Introduction
-
2 - Outline
-
3 - Text Classifiation
-
4 - Text Vectorization
-
5 - Code Demo
-
Unit 05 - Converting text into vectors
-
6. Text Classification using NB - Introduction
-
2 - Outline
-
3 - Naive Bayes
-
4 - Naive Bayes - Example
-
5 - Naive Bayes - Strength and Weaknesses
-
6 - Code Demo
-
Unit 06 - Learning Classifiers - NB
-
Chapter 7. Text Classification using ANN - Intro
-
2 - Outline
-
3 - ANN Introduced
-
4 - Topology of ANN
-
5 - Backpropagation
-
6 - Learning Rate and Bias
-
7 - Limitations
-
8 - Code Demo
-
Unit 07 - Learning Classifiers - ANN
-
Chapter 8 - Intro Word Embeddings
-
2 - Outline
-
3 - Learning Word Embeddings
-
4 - Visualising Embeddings
-
5 - Pretrained Embedding
-
6 - Using pretrained word2vec and glove embeddings
-
7 - Learning your word2vec model using gensim
-
8 - Switching to Keras
-
Unit 08 - Word Embeddings
-
Chapter 9. Recurrent Neural Networks - Intro
-
2 - Outline
-
3 - What is RNN
-
4 - Working of RNN
-
5 - Types of RNN
-
6 - Short term memory
-
7 - Bidirectional RNN
-
8 - Implementing RNN and BRNN in Keras
-
Unit 09 - Recurrent Neural Networks (RNN)
-
Chapter 10 .LSTM_GRUs - Intro
-
2 - Outline
-
3 - LSTM Intuition
-
4 - RNN Recap
-
5 - LSTM Cell
-
6 - LSTM Architecture
-
7 - GRU
-
8 - Code Demo
-
LSTM_GRU
-
Chapter 11. Transformers and Hugging Face - Intro
-
2 - Outline
-
3 - What is attention
-
4 - Self attention in transformers
-
5 -Generating Text
-
6 - Architecture Overview
-
7 - Applications
-
8 - Introducing Hugging Face
-
9 - Using Hugging Face Pipelines
-
Unit 11 - Transformers
-